3,511 research outputs found

    Resummation Improved Rapidity Spectrum for Gluon Fusion Higgs Production

    Full text link
    Gluon-induced processes such as Higgs production typically exhibit large perturbative corrections. These partially arise from large virtual corrections to the gluon form factor, which at timelike momentum transfer contains Sudakov logarithms evaluated at negative arguments ln2(1)=π2\ln^2(-1) = -\pi^2. It has been observed that resumming these terms in the timelike form factor leads to a much improved perturbative convergence for the total cross section. We discuss how to consistently incorporate the resummed form factor into the perturbative predictions for generic cross sections differential in the Born kinematics, including in particular the Higgs rapidity spectrum. We verify that this indeed improves the perturbative convergence, leading to smaller and more reliable perturbative uncertainties, and that this is not affected by cancellations between resummed and unresummed contributions. Combining both fixed-order and resummation uncertainties, the perturbative uncertainty for the total cross section at N3^3LO++N3^3LLφ^\prime_\varphi is about a factor of two smaller than at N3^3LO. The perturbative uncertainty of the rapidity spectrum at NNLO++NNLLφ^\prime_\varphi is similarly reduced compared to NNLO. We also study the analogous resummation for quark-induced processes, namely Higgs production through bottom quark annihilation and the Drell-Yan rapidity spectrum. For the former the resummation leads to a small improvement, while for the latter it confirms the already small uncertainties of the fixed-order predictions.Comment: 30 pages + 17 pages in Appendices, 10 figures; v2: journal version; references added, discussed individual partonic channels for Drell-Ya

    Hadronic mass and q^2 moments of charmless semileptonic B decay distributions

    Full text link
    We report OPE predictions for hadronic mass and q^2 moments in inclusive semileptonic B decays without charm, taking into account experimental cuts on the charged lepton energy and on the hadronic invariant mass, and address the related theoretical uncertainty.Comment: 16 pages, 1 figure; v3: we have corrected a mistake in the code that produced the numerical results; tables replaced, small changes in the tex

    XCone: N-jettiness as an exclusive cone jet algorithm

    Get PDF
    We introduce a new jet algorithm called XCone, for eXclusive Cone, which is based on minimizing the event shape N -jettiness. Because N -jettiness partitions every event into N jet regions and a beam region, XCone is an exclusive jet algorithm that always returns a fixed number of jets. We use a new “conical geometric” measure for which well-separated jets are bounded by circles of radius R in the rapidity-azimuth plane, while overlapping jet regions automatically form nearest-neighbor “clover jets”. This avoids the split/merge criteria needed in inclusive cone algorithms. A key feature of XCone is that it smoothly transitions between the resolved regime where the N signal jets of interest are well separated and the boosted regime where they overlap. The returned value of N -jettiness also provides a quality criterion of how N -jet-like the event looks. We also discuss the N -jettiness factorization theorems that occur for various jet measures, which can be used to compute the associated exclusive N -jet cross sections. In a companion paper [1], the physics potential of XCone is demonstrated using the examples of dijet resonances, Higgs decays to bottom quarks, and all-hadronic top pairs.United States. Department of Energy (Offices of Nuclear and Particle Physics Contracts DE-SC00012567 and DE-SC0011090)Simons Foundation (Investigator grant 327942)United States. Department of Energy (Early Career research program DE-SC0006389)Alfred P. Sloan Foundation (Sloan Research Fellowship)Massachusetts Institute of Technology. Undergraduate Research Opportunities Program (Paul E. Gray Endowed Fund

    A Toolbox for qTq_T and 00-Jettiness Subtractions at N3^3LO

    Full text link
    We derive the leading-power singular terms at three loops for both qTq_T and 0-jettiness, T0\cal{T}_0, for generic color-singlet processes. Our results provide the complete set of differential subtraction terms for qTq_T and T0\cal{T}_0 subtractions at N3^3LO, which are an important ingredient for matching N3^3LO calculations with parton showers. We obtain the full three-loop structure of the relevant beam and soft functions, which are necessary ingredients for the resummation of qTq_T and T0\cal{T}_0 at N3^3LL' and N4^4LL order, and which constitute important building blocks in other contexts as well. The nonlogarithmic boundary coefficients of the beam functions, which contribute to the integrated subtraction terms, are not yet fully known at three loops. By exploiting consistency relations between different factorization limits, we derive results for the qTq_T and T0\cal{T}_0 beam function coefficients at N3^3LO in the z1z\to 1 threshold limit, and we also estimate the size of the unknown terms beyond threshold.Comment: 37 pages + appendices, 8 figures; v2: minor changes, journal versio

    Les Houches 2015: Physics at TeV Colliders Standard Model Working Group Report

    Get PDF
    This Report summarizes the proceedings of the 2015 Les Houches workshop on Physics at TeV Colliders. Session 1 dealt with (I) new developments relevant for high precision Standard Model calculations, (II) the new PDF4LHC parton distributions, (III) issues in the theoretical description of the production of Standard Model Higgs bosons and how to relate experimental measurements, (IV) a host of phenomenological studies essential for comparing LHC data from Run I with theoretical predictions and projections for future measurements in Run II, and (V) new developments in Monte Carlo event generators.Comment: Proceedings of the Standard Model Working Group of the 2015 Les Houches Workshop, Physics at TeV Colliders, Les Houches 1-19 June 2015. 227 page

    Shape-Function Effects and Split Matching in B-> Xs l+ l-

    Full text link
    We derive the triply differential spectrum for the inclusive rare decay B -> Xs l+ l- in the shape function region, in which Xs is jet-like with mX2mbΛQCDmX^2 \lesssim mb \Lambda_QCD. Experimental cuts make this a relevant region. The perturbative and non-perturbative parts of the matrix elements can be defined with the Soft-Collinear Effective Theory, which is used to incorporate alphas corrections consistently. We show that, with a suitable power counting for the dilepton invariant mass, the same universal jet and shape functions appear as in B-> Xs gamma and B-> Xu l nu decays. Parts of the usual alphas(m_b) corrections go into the jet function at a lower scale, and parts go into the non-perturbative shape function. For B -> Xs l+ l-, the perturbative series in alphas are of a different character above and below mu=mb. We introduce a ``split matching'' method that allows the series in these regions to be treated independently.Comment: 33 pages; journal versio

    Jet Substructure at the Tevatron and LHC: New results, new tools, new benchmarks

    Get PDF
    In this report we review recent theoretical progress and the latest experimental results in jet substructure from the Tevatron and the LHC. We review the status of and outlook for calculation and simulation tools for studying jet substructure. Following up on the report of the Boost 2010 workshop, we present a new set of benchmark comparisons of substructure techniques, focusing on the set of variables and grooming methods that are collectively known as "top taggers". To facilitate further exploration, we have attempted to collect, harmonise, and publish software implementations of these techniques.Comment: 53 pages, 17 figures. L. Asquith, S. Rappoccio, C. K. Vermilion, editors; v2: minor edits from journal revision

    Measurement of the cross-section and charge asymmetry of WW bosons produced in proton-proton collisions at s=8\sqrt{s}=8 TeV with the ATLAS detector

    Get PDF
    This paper presents measurements of the W+μ+νW^+ \rightarrow \mu^+\nu and WμνW^- \rightarrow \mu^-\nu cross-sections and the associated charge asymmetry as a function of the absolute pseudorapidity of the decay muon. The data were collected in proton--proton collisions at a centre-of-mass energy of 8 TeV with the ATLAS experiment at the LHC and correspond to a total integrated luminosity of 20.2~\mbox{fb^{-1}}. The precision of the cross-section measurements varies between 0.8% to 1.5% as a function of the pseudorapidity, excluding the 1.9% uncertainty on the integrated luminosity. The charge asymmetry is measured with an uncertainty between 0.002 and 0.003. The results are compared with predictions based on next-to-next-to-leading-order calculations with various parton distribution functions and have the sensitivity to discriminate between them.Comment: 38 pages in total, author list starting page 22, 5 figures, 4 tables, submitted to EPJC. All figures including auxiliary figures are available at https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2017-13

    Measurement of χ c1 and χ c2 production with s√ = 7 TeV pp collisions at ATLAS

    Get PDF
    The prompt and non-prompt production cross-sections for the χ c1 and χ c2 charmonium states are measured in pp collisions at s√ = 7 TeV with the ATLAS detector at the LHC using 4.5 fb−1 of integrated luminosity. The χ c states are reconstructed through the radiative decay χ c → J/ψγ (with J/ψ → μ + μ −) where photons are reconstructed from γ → e + e − conversions. The production rate of the χ c2 state relative to the χ c1 state is measured for prompt and non-prompt χ c as a function of J/ψ transverse momentum. The prompt χ c cross-sections are combined with existing measurements of prompt J/ψ production to derive the fraction of prompt J/ψ produced in feed-down from χ c decays. The fractions of χ c1 and χ c2 produced in b-hadron decays are also measured

    Measurements of fiducial and differential cross sections for Higgs boson production in the diphoton decay channel at s√=8 TeV with ATLAS

    Get PDF
    Measurements of fiducial and differential cross sections are presented for Higgs boson production in proton-proton collisions at a centre-of-mass energy of s√=8 TeV. The analysis is performed in the H → γγ decay channel using 20.3 fb−1 of data recorded by the ATLAS experiment at the CERN Large Hadron Collider. The signal is extracted using a fit to the diphoton invariant mass spectrum assuming that the width of the resonance is much smaller than the experimental resolution. The signal yields are corrected for the effects of detector inefficiency and resolution. The pp → H → γγ fiducial cross section is measured to be 43.2 ±9.4(stat.) − 2.9 + 3.2 (syst.) ±1.2(lumi)fb for a Higgs boson of mass 125.4GeV decaying to two isolated photons that have transverse momentum greater than 35% and 25% of the diphoton invariant mass and each with absolute pseudorapidity less than 2.37. Four additional fiducial cross sections and two cross-section limits are presented in phase space regions that test the theoretical modelling of different Higgs boson production mechanisms, or are sensitive to physics beyond the Standard Model. Differential cross sections are also presented, as a function of variables related to the diphoton kinematics and the jet activity produced in the Higgs boson events. The observed spectra are statistically limited but broadly in line with the theoretical expectations
    corecore